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Abstract

This contribution deals with the use of Biot’s theory of propagation of elastic waves in a fluid-saturated porous solid

in conjunction with the computationally efficient spectral element technique as a means for forward analysis of the

dynamic behavior of multi-layer systems consisting of both one- and two-phase material layers. Details of the math-

ematical formulation and verification of an axi-symmetric semi-infinite spectral element for a fully saturated porous

medium are presented. The spatial domain of the element in the vertical direction is assumed to extend to infinity. In the

radial direction it extends to a finite distance. In the last part of this contribution an example is presented of the use of

the developed element for parameter identification of pavement layers via the use of falling weight deflectometer

test. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

In earlier publications (Al-Khoury et al., 2001a,b, part I and II) axi-symmetric spectral elements for
layered system have been developed for forward and inverse calculations in one-phase solid media. In the
present publication the previous work has been extended to include two-phase porous media. The objective
of this research work is the development of a robust and computationally efficient parameter identification
technique for layered systems via the use of non-destructive testing. Particular attention is given to the
identification of pavement layer parameters via the use of the falling weight deflectometer test (FWD).

Biot’s theory of propagation of elastic waves in a fluid-saturated porous solid (Biot, 1956) has been used
by a number of researchers as a basis for the development of various solution methods spanning from
analytical to finite elements. Analytical methods have been utilized by, among others, Halpern and
Christiano (1986), Philippacopoulos (1988), and Zeng and Rajapakse (1999) to study wave propagation
under well-defined geometric and loading configurations. Either half space or two-layer systems with either
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surface or embedded loads have been studied. The focus of the majority of such work is on the effects of
different parameters on the overall response of the porous medium.

Most of the analytical solutions are based on far field formulations, in which it is assumed that the
structure has infinite boundaries in the radial direction (in case of cylindrical coordinates r, h, z). Solution of
the governing equations for such problems usually involves Hankel integral transform in the spatial domain
as

uHðn; zÞ ¼
Z 1

0

ruðr; zÞJvðnrÞdr

uðr; zÞ ¼
Z 1

0

nuHðn; zÞJvðnrÞdn
ð1Þ

in which uðr; zÞ is a displacement function with uHðn; zÞ is its Hankel transform, n is the wavenumber and Jv
is the Bessel function of the first kind of order v. Typically uHðn; zÞ forms transcendental functions, which in
many situations, cause numerical inconveniences when integrated between zero and infinity (Seale and
Kausel, 1989).

Finite element techniques have been intensively utilized by among others, Yan et al. (1999), Khalili et al.
(1999) and Liu et al. (2000). Finite element method is a powerful tool suitable for forward calculations of
general cases with complicated geometrical and load configurations. However, because of the computa-
tional requirements its utilization for inverse calculations is limited.

Semi-analytical methods, on the other hand, represent a combination of analytical and finite element
methods. Both exact and semi-discrete stiffness matrices are involved in such techniques. Among others,
Senjuntichai and Rajapakse (1995) and Degrande et al. (1998) have formulated exact stiffness matrices for
layered poroelastic systems. These formulations require evaluation, numerical or otherwise, of the integrals
of Eq. (1).

The semi-discrete stiffness matrix technique, developed by Lysmer (1970) and later generalized by Kausel
and Roesset (1981), was utilized by Bougacha et al. (1993) for the analysis of foundations on a poroelastic
stratum. The advantage of this technique is the substitution of the transcendental functions, Eq. (1), with
algebraic expressions by discretizing the layers involved into many sub-layers by means of linear shape
functions in resemblance to that of the finite element technique. This makes the semi-discrete technique
more efficient and robust. Whereas this technique is suitable for forward calculations, its computational
requirements, however, can be quite significant mainly when utilized in iterative schemes for inverse cal-
culations.

Another class of the semi-analytical methods is the spectral element technique introduced by Doyle
(1997). The spectral layer elements are described by exact stiffness matrices similar to those mentioned
above. However, unlike these, which impose continuity of displacements at the layer boundaries (e.g.
uðr; z�j Þ ¼ uðr; zþj Þ), the conditions at the boundaries between layers are defined by element nodes similar to
that in the finite element method. At the element node, the degrees of freedom are specified and numbered
locally regardless of the neighboring layers. The assembly of the layers is done according to the conven-
tional finite element techniques. This renders the spectral element method more general and suitable for a
wider range of engineering problems (Rizzi and Doyle, 1992). The generality implies that the load can be
applied at the surface and/or at any other layer boundary, the bottom boundary can be rigid or infinite, etc.
Degrande and De Roeck (1992) have utilized the spectral element method for the formulation of plain
strain spectral elements for porous media.

In this contribution, and because of the computational advantages of the spectral element method, an
axi-symmetric semi-infinite spectral element for porous media is derived. To improve further the compu-
tational efficiency, the following boundary conditions are imposed:
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1. The element is assumed to extend to infinity in the vertical direction, z, and to a finite distance, where
waves are known a priori to vanish, in the radial direction, r. The later condition leads to a series sum-
mation, alleviating thus, the inconvenience of the infinite integration (Eq. (1)).

2. Drained conditions are assumed at the top surface of the element. The imposition of this condition al-
lows formulation of the stiffness matrix of the element in terms of the two degrees of freedom of the solid
component (like that of the one-phase) reducing thus the overall size of the system matrix manipulations.

Also, in this contribution, a parameter identification procedure proposed earlier (Al-Khoury et al.,
2001a,b) has been adopted to the case of layer systems consisting of both dry and saturated layers. This
procedure, in combination with the forward model, enables parameter identification of layered systems on
the basis of experimentally measured data. In the last part of the contribution an example is presented for
parameter identification of pavement layers via the use of FWD test.

2. The governing equations

The equations of motion for a homogeneous isotropic poroelastic solid governed by Biot’s two-phase
theory may be expressed as:

rij;j ¼ q11€uusi;þq12€uuf i þ bð _uusi � _uuf iÞ
r;i ¼ q12€uusi þ q22€uuf i � bð _uusi � _uuf iÞ

ð2Þ

in which r ¼ �/p (where p is the fluid pressure and / is the porosity) represents the stress which acts on the
fluid phase, while rij is the tensor of the stresses which act on the solid phase of the material. usi and ufi are
the displacement vectors of the solid and fluid phases respectively. b ¼ ðc=jÞ/2 (where c is the fluid unit
weight and j is the permeability) represents the dissipation factor which controls the relative motion be-
tween fluid and solid. The density coefficients q11 ¼ q þ /qfða� 2Þ, q12 ¼ /qfð1� aÞ, q22 ¼ ~aa/qf (where ~aa
is Biot’s tortuosity parameter, Bourbie et al., 1987), represent the total effective mass of solid moving in the
fluid and their coupling (Biot, 1956). (The tilde (~��) will be used in this paper to indicate Biot’s parameters.)
q ¼ ð1� /Þqs þ /qf is the conventional density of porous media where qs and qf are the solid (skeleton)
and fluid densities respectively.

For an axi-symmetric porous solid, the stress–strain relations are (Biot, 1956)

rrr ¼ 2lerr þ ~kkeþ ~QQe

rzz ¼ 2lezz þ ~kkeþ ~QQe

rhh ¼ 2lehh þ ~kkeþ ~QQe

srz ¼ lerz

r ¼ ~QQeþ ~RRe

ð3Þ

in which err ¼ ðous=orÞ, ezz ¼ ðows=ozÞ, erz ¼ ðous=ozÞ þ ðows=orÞ and ehh ¼ ðus=rÞ (where us and ws are the
radial and vertical displacements of the solid phase respectively) represent the strain components in the
solid phase and e ¼ err þ ezz þ ehh represents the dilation of the solid. e ¼ ðouf=orÞ þ ðowf=ozÞ þ ðuf=rÞ
(where uf and wf are the radial and vertical displacements of the fluid phase respectively) represents the
dilation of the fluid. The material parameters of Eq. (3) are defined as (Bourbie et al., 1987): l the shear

modulus of the material, ~kk ¼ k þ ð ~QQ2=~RRÞ, ~QQ ¼ ~MM/ð~bb � /Þ and ~RR ¼ ~MM/2 in which k is the Lame’ coefficient
for the drained case, ~MM is the Biot’s coefficient for the compressibility of the two-phase material and ~bb is
Biot’s coefficient for the fluid flow which is a function of porosity and the geometry of the channels where
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flow occurs. Details of the parameter identification and experimental determination can be found in Biot
and Willis (1957).

Upon substituting Eq. (3) into Eq. (2), the governing equations of motion in terms of displacements can
be obtained as

ð~kk þ 2lÞrr � us þ ~QQrr � ufþ; lr	r	 us ¼ q11€uus þ q12€uuf þ bð _uus � _uufÞ
~QQrr � us þ ~RRrr � uf ¼ q12€uus þ q22€uuf � bð _uus � _uufÞ

ð4Þ

For an axi-symmetric case, Eq. (4) represents four coupled equations for the four unknown displacements
us and uf . As in the case of one-phase solid, by means of Helmholtz decomposition, the displacement fields
corresponding to the solid and the liquid components can be expressed as the sum of the gradient of a scalar
potential u and the curl of a vector potential w as (Biot, 1956; Halpern and Christiano, 1986)

us ¼ rus þr	 ws

uf ¼ ruf þr	 wf

ð5Þ

In an axi-symmetric motion, the vector potential w has a component wh only. Thus r2w ¼
r2wh � ðwh=r

2Þ. This property reduces the solution of the problem to solving only for scalar potentials. For
convenience of notation, w will be written instead of wh.

By substituting Eq. (5) into Eq. (4) and applying the condition r � w ¼ 0 (Achenbach, 1973), the fol-
lowing equations of motion are obtained:

r ~kk
�h

þ 2l
�
r2us þ ~QQr2uf � q11 €uus � q12 €uuf � b _uus þ b _uuf

i
þr l r2ws

��
� ws

r2

�
� q11

€wws � q12
€wwf � b _wws þ b _wwf

	
¼ 0

r ~QQr2us

h
þ ~RRr2uf � q12 €uus � q22 €uuf þ b _uus � b _uuf

i
þr

h
� q12

€wws � q22
€wwf þ b _wws � b _wwf

i
¼ 0

ð6Þ

These equations will be satisfied if each bracketed term vanishes, hence, Eq. (6) yields two uncoupled sets of
simultaneous equations as

ð~kk þ 2lÞr2us þ ~QQr2uf � q11 €uus � q12 €uuf � bð _uus � _uufÞ ¼ 0
~QQr2us þ ~RRr2uf � q12 €uus � q22 €uuf þ bð _uus � _uufÞ ¼ 0

)
ð7aÞ

l

�
r2ws �

ws

r2

�
� q11

€wws � q12
€wwf � bð _wws � _wwfÞ ¼ 0

�q12
€wws � q22

€wwf þ bð _wws � _wwfÞ ¼ 0

9=
; ð7bÞ

In analogy to the case of the one-phase continuum medium, Eqs. (7a) and (7b) describe attenuated dila-
tational and rotational waves in a porous medium respectively.

Applying Fourier transform to Eqs. (7a) and (7b) yields

ð~kk þ 2lÞr2ûus þ ~QQr2ûuf ¼ M11ûus þM12ûuf

~QQr2ûus þ ~RRr2ûuf ¼ M12ûus þM22ûuf

)
ð8aÞ

l

 
r2ŵws �

ŵws

r2

!
¼ M11ŵws þM12ŵwf

0 ¼ M12ŵws þM22ŵwf

9>>=
>>; ð8bÞ
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in which M11 ¼ �x2q11 þ ixb, M12 ¼ �x2q12 � ixb and M22 ¼ �x2q22 þ ixb where x is the angular fre-
quency and i ¼

ffiffiffiffiffiffiffi
�1

p
. The hat (̂��) in Eqs. (8a) and (8b) indicate the frequency domain formulation. Eq. (8a)

reveals the existence of two dilatational waves and that each of these waves involves coupled motion in the
fluid and the solid. While Eq. (8b) reveals the existence of one rotational wave due to the solid phase with a
coupling of motion between the solid and fluid (Biot, 1956).

2.1. Solution of the rotational waves

From the second expression of Eq. (8b) it can be seen that

ŵwf ¼ �M12

M22

ŵws ð9Þ

Substituting Eq. (9) into the first expression of Eq. (8b) yields

l r2ŵws

 
� ŵws

r2

!
¼ M0ŵws ð10Þ

in which M0 ¼ M11 � ðM2
12=M22Þ. Eq. (10), can be solved by the method of separation of variables, resulting

to

ŵws x; n; r; zð Þ ¼ HzJ1ðnrÞ ð11Þ
where n is the wavenumber in the radial direction and J1 is the Bessel function of the first kind of order one.
By substituting Eq. (11) into Eq. (10), the solution of the resulting ordinary differential equation is

Hz ¼ Ae�fshz ð12Þ
in which fsh ¼ ððM0=lÞ þ n2Þ1=2 and the subscript sh refers to the shear (rotational) wave. (The second
solution of Eq. (12) ðBefshzÞ has been discarded to keep the solution finite in large depths.) Therefore, the
solution of the rotational wave is

ŵwsðx; n; r; zÞ ¼ Ae�fshzJ1ðnrÞ

ŵwfðx; n; r; zÞ ¼ �A
M12

M22

e�fshzJ1ðnrÞ
ð13Þ

By letting q12 ¼ q22 ¼ 0 and q11 ¼ q, the exponent fsh ¼ ððM0=lÞ þ n2Þ1=2 in Eq. (13) reduces to fsh ¼
ð�ðx2=c2shÞ þ n2Þ1=2 in which c2sh ¼ l=q as that for the rotational waves in one-phase media (Al-Khoury
et al., 2001a,b).

2.2. Solution of the dilatational waves

The two expressions in Eq. (8a) can be presented in a matrix format as

~kk þ 2l ~QQ
~QQ ~RR

� 	
r2ûus

r2ûuf

� �
¼ M11 M12

M12 M22

� 	
ûus

ûuf

� �
ð14Þ

With straight forward matrix inversion and multiplication, Eq. (14) can be expressed as

r2ûus

r2ûuf

� �
¼ 1

D

~RRM11 � ~QQM12
~RR;M12 � ~QQM22

� ~QQM11 þ ð~kk þ 2lÞM12 � ~QQM12 þ ð~kk þ 2lÞM22

� 	
ûus

ûuf

� �
ð15Þ

in which D ¼ ð~kk þ 2lÞ~RR� ~QQ2. Solution of the system of the two simultaneous partial differential equa-
tions represented by Eq. (15) can be achieved elegantly by utilization of the Diagonalization technique
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(Kreyszig, 1999). This technique entails the transformation of an n	 n matrix into a diagonal matrix whose
entries on the main diagonal are the eigenvalues of the original matrix. By use of vector notation, Eq. (15)
can be presented as

r2ûu ¼ A/̂/ ð16Þ

in which

A ¼ a11 a12
a21 a22

� 	

where aij are the coefficients of the matrix in Eq. (15). Let

u ¼ Xy ð17Þ

in which X is a matrix of the eigenvectors of A with the coefficients

x11 ¼ x12 ¼ �a12

x21 ¼
1

2
a11 �

1

2
a22 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 � 2a11a22 þ a222 þ 4a12a21

q
x22 ¼

1

2
a11 �

1

2
a22 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 � 2a11a22 þ a222 þ 4a12a21

q ð18Þ

Then Eq. (16) becomes

r2ûu ¼ Xr2ŷy ¼ Aûu ¼ AXŷy ð19Þ

Multiplying the second and the fourth term by X�1 from the left and noting that X�1X ¼ I (in which I
is a unit matrix), Eq. (19) can be expressed as

r2ŷy ¼ X�1AXŷy ¼ Dŷy ð20Þ

in which D is a diagonal matrix with the coefficients

D11 ¼ f2s ¼
1

2
a11 þ

1

2
a22 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 � 2a11a22 þ a222 þ 4a12a21

q
D12 ¼ D21 ¼ 0;

D22 ¼ f2f ¼
1

2
a11 þ

1

2
a22 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 � 2a11a22 þ a222 þ 4a12a21

q ð21Þ

where f2i are used in stead of Dii for convenience of notation. Thus Eq. (20) can be written in terms of
uncoupled equations as

r2ŷy1 � f21ŷy1 ¼ 0 ð22aÞ

r2ŷy2 � f22ŷy2 ¼ 0 ð22bÞ

Solution of ŷy1 and ŷy2 may take the form

ŷy1ðr; zÞ ¼ ŷy1ðzÞJ0ðnrÞ
ŷy2ðr; zÞ ¼ ŷy2ðzÞJ0ðnrÞ

ð23Þ

in which J0 is the Bessel function of the first kind of order 0. Substituting Eq. (23) into Eqs. (22a) and (22b)
and solving the resulting ordinary differential equations yields

4078 R. Al-Khoury et al. / International Journal of Solids and Structures 39 (2002) 4073–4091



ŷy1ðr; zÞ ¼ Be�fpszJ0ðnrÞ
ŷy2ðr; zÞ ¼ Ce�fpf zJ0ðnrÞ

ð24Þ

in which fps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2s þ n2

q
and fpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2f þ n2

q
represent wavenumbers in the z-direction and the subscript pi

refers to the P-wave (dilatational wave) in the solid, i ¼ s, and the fluid i ¼ f. The constants of integration B
and C are determined from the boundary conditions. As for Eq. (12), the second solutions of Eq. (24) have
been discarded. Substitution of Eq. (24) into Eq. (17) yields the solution for the dilatational waves in solid
and fluid as

ûus ¼ �ðBa12e�fpsz þ Ca12e�fpf zÞJ0ðnrÞ
ûuf ¼ ðBx21e�fpsz þ Cx22e�fpf zÞJ0ðnrÞ

ð25Þ

In the limit case of dry soil, q12 ¼ q22 ¼ 0, b ¼ 0, R ¼ Q ! 0, and q11 ¼ q, Eqs. (15) and (16) reduce to

lim
R;Q!0

r2ûus

r2ûuf

� �
¼ lim

R;Q!0

a11 a12
a21 a22

� 	
ûus

ûuf

� � 
¼ 1

ð~kk þ 2lÞR� Q2

RM11 0
�QM11 0

� 	
ûus

ûuf

� �!
ð26Þ

Then by dividing all terms in a11 by R and all terms in a21 by Q, in the limit case, they reduce to

lim
R;Q!0

a11 ¼
M11

k þ 2l
¼ �x2

c2p
lim

R;Q!0
a21 ¼ 0

a12 ¼ a22 ¼ 0

ð27Þ

Substituting Eq. (27) into Eqs. (18) and (21) yields,

D11 ¼ f2s ¼ a11 ¼ x21

D22 ¼ f2f ¼ 0 ¼ x11 ¼ x12 ¼ x22
ð28Þ

and by substituting Eqs. (27) and (28) into Eq. (25), the two equations for dilatational motions in solid and
fluid reduce to a one equation of a dilatation motion in the dry solid as

ûus ¼ ûuf ¼ ûu ¼ Ae�fpzJ0ðnrÞ ð29Þ

in which

fp ¼ fps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2s þ n2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ n2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2

c2p
þ n2

s

identical to that of the dry case (Al-Khoury et al., 2001a,b).

3. Formulation of a porous semi-infinite spectral element

The spectral element method (Doyle, 1997) is utilized for the formulation of an axi-symmetric semi-
infinite spectral element for a porous medium. The element can be pictorially presented as shown in Fig. 1.
As in the finite element method, the spectral element is defined by a stiffness matrix. However, the sig-
nificance difference is that the inertia of the distributed mass is described exactly. As a consequence, one
spectrally formulated element is sufficient to describe a whole layer without the need for subdivisions.
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For an axi-symmetric system the displacements can be obtained as

ûuir ¼
oûui

or
� oŵwi

oz

ûuiz ¼
oûui

oz
þ 1

r
oðrŵwiÞ
or

ð30Þ

in which i ¼ s is for the solid phase and i ¼ f is for the fluid phase. Substituting Eqs. (13) and (25) into
Eq. (30) leads, for the solid phase, to

ûusr ¼ Bna12e�fpsz
�

þ Cna12e�fpf z þ Afshe
�fshz

�
J1ðnrÞ

ûusz ¼ Bfpsa12e
�fpsz

�
þ Cfpfa12e

�fpf z þ Ane�fshz
�
J0ðnrÞ

ð31Þ

and for the fluid phase to

ûufr ¼ � Bnx21e�fpsz

�
þ Cnx22e�fpf z þ A

M12

M22

fshe
�fshz

�
J1ðnrÞ

ûufz ¼ � Bfpsx21e
�fpsz

�
þ Cfpfx22e

�fpf z þ A
M12

M22

ne�fshz

�
J0ðnrÞ

ð32Þ

The relevant stresses can be obtained by substituting Eqs. (31) and (32) into Eq. (3), and knowing that the
normal stress in Eq. (3) can be expressed as

rzz ¼ 2lezz þ keþ
~QQ
~RR

r ð33Þ

the normal stress for the solid phase is then

r̂rzz ¼ � 2Alfshne
�fshz

�
þ Ba12e�fpsz kð

n
þ 2lÞf2p1 � kn2

o
þ Ca12e�fpf z kð

n
þ 2lÞf2pf � kn2

o�
J0ðnrÞ þ

~QQ
~RR

r̂r

ŝszr ¼ �l Ae�fshz f2sh
��

þ n2
�
þ 2Ba12nfpse

�fpsz þ 2Ca12nfpfe
�fpf z

�
J1ðnrÞ

ð34Þ

and for the fluid phase is

r̂r ¼ � ~QQa12 Be�fpsz n2
�n�

� f2ps
�
þ Ce�fpf z n2

�
� f2pf

�o
� ~RR Bx21e�fpsz n2

�n
� f2ps

�
þ Cx22e�fpf z n2

�
� f2pf

�o�
J0ðnrÞ ð35Þ

If a drained condition exists at the surface z ¼ 0 or at the contact surface with a dry layer, which is normally
the case in practice, no excess pore pressure can be developed such that

Fig. 1. Poroelastic semi-infinite spectral element.
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r̂r ¼ �/p ¼ 0 ð36Þ

Substituting Eq. (36) into Eq. (35), a relationship between B and C can be established as

C ¼ �NB ð37Þ

in which

N ¼
~QQa12ðn2 � f2psÞ þ ~RRx21ðn2 � f2pfÞ
~QQa12ðn2 � f2pfÞ þ ~RRx22ðn2 � f2pfÞ

where aij and xij are as defined in Eqs. (16) and (18) respectively. By substituting Eq. (37) into Eqs. (31), (32)
and (34) the displacements and stresses can be determined in terms of only two constants A and B. These
constants can be quantified by solving for the boundary conditions at the element node. Let the radial and
vertical displacements of the skeleton at the node, z ¼ 0, be equal to usr1 and usz1 respectively, Fig. 1. The
displacements, in the z coordinate, at the node becomes

ûusr1 ¼ Afsh þ Ba12nð1� NÞ
ûufz1 ¼ An þ Ba12ðfps � NfpfÞ

ð38Þ

Solution of Eq. (38) in terms of A and B leads to

A
B

� �
¼ 1

D
�n=a12 fsh=a12

�fps þ Nfpf �n 1� Nð Þ

� 	
ûusr1
ûusz1

( )
ð39Þ

in which

D ¼ �n2ð1� NÞ þ fshðfps � NfpfÞ

As for the displacements, the stresses at the node (z ¼ 0) can be expressed by means of Eq. (37) as

r̂rzz1 ¼ � 2Alnfsh
�

þ Ba12 kð
n

þ 2lÞf2ps � kn2 � N kð
n

þ 2lÞf2pf � kn2
oo�

ŝszr1 ¼ �l A f2sh
��

þ n2
�
þ 2Ba12n fps

�
� Nfpf

�� ð40Þ

Following the Cauchy stress principle, the tractions at node 1 are related to the stresses by

T̂Tz1 ¼ �r̂rzz1 and T̂Tr1 ¼ �ŝszr1 ð41Þ

On substituting Eq. (40) into Eq. (41), the following relationships are obtained between the applied traction
T̂Tz1 and T̂Tr1 and the constants A and B as

T̂Tz1
T̂Tr1

� �
¼ 2lnfsh a12 k þ 2lð Þf2ps � kn2 � N k þ 2lð Þf2pf � kn2

n on o
l f2sh þ n2
� �

2la12n fps � Nfpf
� �

" #
A
B

� �
ð42Þ

Upon substituting the vector fABgT of Eq. (39) into Eq. (42), a relationship is obtained between the applied
traction and the displacements at the node that can symbolically be expressed as

T̂T ¼ k̂kûu ð43Þ

in which k̂k represents the stiffness matrix of the spectral semi-infinite element in resemblance to that of the
finite element. The stiffness matrix for the half space porous medium is complex and non-symmetric 2	 2
matrix with coefficients
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k̂k11 ¼
1

D

�
� n kð
n

þ 2lÞf2ps � kn2 � N kð
n

þ 2lÞf2pf � kn2
oo

þ 2lnfsh fps
�

� Nfpf
��

k̂k12 ¼
1

D
fsh kð
n�

þ 2lÞf2ps � kn2 � N kð
n

þ 2lÞf2pf � kn2
oo

� 2ln2fsh 1ð � NÞ
�

k̂k21 ¼
1

D

�
� 2ln2 fps

�
� Nfpf

�
� l f2sh
�

þ n2
��

� fps þ Nfpf
��

k̂k22 ¼
1

D
2lnfsh fps

��
� Nfpf

�
� ln f2sh

�
þ n2

�
1ð þ NÞ

�
ð44Þ

in which D is as defined in Eq. (39). The non-symmetry of the stiffness matrix is due to the imposition of a
drained condition at the element surface. The imposition of this condition has resulted to an element with
only two degrees of freedom at the node similar to that of the single phase elements developed earlier (Al-
Khoury et al., 2001a,b).

4. The boundary value problem

A general solution of the system of equations, Eq. (43), is obtained by solving for the boundary con-
ditions. The spectral element developed in the previous section can be utilized for solving general boundary
value problems suitable for either finite or infinite homogeneous boundary conditions. As stated earlier, the
objective of this research work is the development of a forward model capable of describing wave prop-
agation in a pavement structure generated by the load impact of a FWD. As such, wave phenomena within
a finite region from the load center are of interest. This implies that a homogeneous boundary at r ¼ R is
postulated such that

ûu r; zð ¼ cntÞ ¼ 0; r ¼ R ð45aÞ
in which R is some distance, far from the source, at which waves are known a priori to vanish. It may be
argued that imposing zero displacement at distance R does not account for the radiation of waves at in-
finity. However, waves in an axi-symmetric system would have a Bessel function representation, Eqs. (13)
and (25). This function has the appropriate radiation behavior at large distance R. As long as R is large
enough, the finite space window effectively approximates an infinite window. This is precisely what is done
when time domain reconstruction is typically achieved by using the discrete Fourier transform (DFT) or the
fast Fourier transform (FFT).

At the element surface, z ¼ 0, a normal traction and/or a shear traction can be applied as

T̂Tzðr; z ¼ 0Þ ¼
�
SðrÞ; 06 r6 a
0; a < r6R

T̂Trðr; z ¼ 0Þ ¼ DðrÞ; 06 r6 a
0; a < r6R

�
9>>>=
>>>;

ð45bÞ

in which a is the radius of the applied traction.
The imposition of the condition of Eq. (45a) to Eq. (31) yields, symbolically,

ûuðR; z ¼ cntÞ ¼ ẐZðz ¼ cntÞR̂RðRÞ ¼ 0 ð46Þ

in which ẐZðz ¼ cntÞ is the function between brackets in Eq. (31) and R̂RðRÞ is the Bessel function. The non-
trivial solution of Eq. (46), for a given z, and in reference to Eq. (31), is

R̂RðRÞ ¼ JvðnRÞ ¼ 0 ð47Þ
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This condition can be satisfied at the infinitely many positive roots am of the Jv function (Abramowitz and
Stegun, 1972). Eq. (47) implies nR ¼ am, thus n ¼ nm ¼ am=R. Hence the m functions

R̂RmðrÞ ¼ JvðnmrÞ ¼ Jv
am

R
r

� �
ð48Þ

are solutions to the wave equations, Eq. (4), in the radial direction, with each m corresponding to the mth
normal mode of vibration. It can be noticed here that the homogenous boundary condition at r ¼ R has
inevitably lead to an a-priori known discrete set of normal modes of vibration. This discretization is ap-
plicable to all points within the region z, r < R. It is this choice that renders this technique computationally
attractive over those, which involve discretization of physical systems with infinite boundaries. In the later,
nm has to be evaluated numerically for each output point. Such evaluation is computationally difficult due
to the semi-infinite upper limit of the inverse wave number integral, Eq. (1), the oscillatory nature of the
Bessel function and the presence of surface wave poles of the integrand. These exacerbate at points rela-
tively far from the source, causing numerical instabilities.

It follows that the general solution of Eq. (31) that satisfies the homogenous condition ûuðR; zÞ ¼ 0 can be
presented by the series

ûusr ¼
X1
m¼1

Bmnma12e
�fpsmz

�
þ Cmnma12e

�fpfmz þ Amfshme
�fshmz

�
J1 nmrð Þ

ûusz ¼
X1
m¼1

Bmfpsma12e
�fpsmz

�
þ Cmfpfma12e

�fpfmz þ Amnme
�fshmz

�
J0 nmrð Þ

ð49Þ

in which Cm is as defined in Eq. (37). Same is applicable to the fluid displacements, Eq. (32).
These functions, ûusr and ûusz, are the eigenfunctions of the vibrating system and the values nm ¼ am=R are

their corresponding eigenvalues. Basically a series of these eigenfunctions for infinitely many eigenvalues
(m ¼ 1 ! 1) should be able to simulate wave propagation in the system for the chosen boundary con-
ditions. However, as it will be shown later, summation over limited number of eigenvalues (m ¼ 1 ! M)
will suffice.

It follows that the general solutions to the stress functions, Eqs. (34) and (35), are also described by a
series summation over m eigenvalues. Thus, at the element surface, z ¼ 0, the general solution to Eq. (40)
yields

r̂rzz1 ¼
X1
m¼1

� 2Amlnmfshm
�

þ Bma12 kð
n

þ 2lÞf2psm � kn2
m � N kð

n
þ 2lÞf2pfm � kn2

m

oo�
J0 nmrð Þ

ŝszr1 ¼
X1
m¼1

� l Am f2shm
��

þ n2
m

�
þ 2Bma12nm fpsm

�
� Nfpfm

��
J1 nmrð Þ

ð50Þ

Applying the boundary conditions in Eq. (45b) to Eq. (50), and by means of Eq. (41), the surface
traction, in the region 06 r6 a, can be described as

T̂Tz1 ¼ �r̂rzz1 ¼
X1
m¼1

� F̂FzmJ0ðnmrÞ ¼ SðrÞ ð51aÞ

T̂Tr1 ¼ �ŝsrz1 ¼
X1
m¼1

� F̂FrmJ1ðnmrÞ ¼ DðrÞ ð51bÞ

in which F̂Fimð¼ F̂Fzm or F̂FrmÞ represents the terms between brackets in Eq. (50). Eqs. (51a) and (51b) is a
typical form of a Fourier–Bessel series with coefficient F̂Fim, which can be determined analytically (Kreyszig,
1999) as
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F̂Fim ¼ 2

R2J 2
vþ1 amð Þ

Z R

0

rgðrÞJvðnmrÞdr ð52Þ

where gðrÞ represents either SðrÞ or DðrÞ in Eq. (50). Substituting Eqs. (51a) and (51b) into Eq. (42) leads,
for the m eigenvalue, to

F̂Fzm
F̂Frm

� �
¼ 2lnmfshm a12 k þ 2lð Þf2psm � kn2

m � N k þ 2lð Þf2pfm � kn2
m

n on o
l f2shm þ n2

m

� �
2la12nm fpsm � Nfpfm

� �
" #

Am

Bm

� �
ð53Þ

in which

Am

Bm

� �
¼ 1

D
�nm=a12 fshm=a12

�fpsm þ Nfpfm �nmð1� NÞ

� 	
ûusr1
ûusz1

( )
ð54Þ

where D ¼ �n2
mð1� NÞ þ fshmðfpsm � NfpfmÞ.

Substituting Eq. (54) into Eq. (53) and solving the resulting system of equations give the displacements at
the element node. By substituting back these displacements into Eq. (54) gives Am and Bm. Once these
constants are quantified, then, by substituting them into Eqs. (31) and (32), the displacements at any point
in the half space can be determined. Also, by substituting these constants into Eqs. (34) and (35) the stresses
and excess pore pressure at any point can be obtained. This applies to the case of a layered structure where
Eq. (43) becomes T̂T ¼ K̂KÛU, in which K̂K is the global stiffness matrix and ÛU is the structural degrees-of-
freedom vector.

5. Element verification

The porous media spectral element has been implemented in the spectral element code layered media
dynamic analysis (LAMDA), (Al-Khoury et al., 2001a,b). Verification of the newly developed element has
been done by comparing the response of a multi-layer system consisting of dry and fully saturated layers
with that obtained from the finite element method. The finite element system INSAP-PM (Liu et al., 2000)
was utilized for this purpose.

In an earlier publication (Al-Khoury et al., 2001a,b) two axi-symmetric spectral elements (a layer ele-
ment and a semi-infinite element) for a one-phase medium were developed. The layer element can be
pictorially presented as in Fig. 2. In the vertical direction it extends to z ¼ h and in the horizontal direction

Fig. 2. One-phase axi-symmetric layer element (Al-Khoury et al., 2001a,b).
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it extends to the r ¼ R, where the wave motion vanishes. The element is physically defined by two nodes
each having one radial and one vertical degree of freedom.

As stated earlier, the drain condition imposed at the surface of the semi-infinite porous spectral element
has lead to solving for only two degrees of freedom at the node. This enables direct assemblage with the
previously derived one-phase elements. A multi-layer system consisting of dry layers and a saturated half
space can thus be simulated.

Assemblage of spectral structural stiffness matrix follows the same procedures as that of the conventional
finite element method but the assemblage is done for every frequency xn and wavenumber nm. Both em-
bedded and/or surface loads can be applied. Here, a uniformly distributed normal force applied on a
circular area at the surface of a layered system will be simulated for verification of element derivation and
computer implementation.

A layered medium representing a typical pavement structure subjected to a FWD load pulse was sim-
ulated. The structure was assumed to consist of three layers; asphalt (E modulus ¼ 1000 MPa and h ¼ 150
mm), subbase (E modulus ¼ 200 MPa and h ¼ 250 mm) and a fully saturated subgrade (E modulus ¼ 25
MPa and h ¼/ mm). Poisson’s ratio for all materials is 0.35. The material parameters for the porous media
were assumed as follows:

qs ¼ 1500 kg=m3; qf ¼ 1000 kg=m3; j ¼ 0:0001 mm=s; / ¼ 0:8; b ¼ 0:97; ~MM ¼ 1200 MPa

The tortuosity parameter proposed by Berryman and Thigpen (1985) ~aa ¼ ð1þ 1=/Þ=2 was utilized. It is
worth mentioning here that other researchers have assumed q12 ¼ 0 (see description of parameters of Eq.
(2)). During the development of this research work both formulations were examined and found that no
difference can be observed, at least for the cases under investigation. Also, it was found that, for the cases
and frequency spectrum under investigation, variations of the tortuosity parameter between 1 and 3 cause
no observable differences in the response. Other researchers have come to same conclusion (see for example
Halpern and Christiano, 1986; Bougacha et al., 1993).

In LAMDA, the geometry was simulated by the use of two one-phase layer elements and 1 semi-infinite
porous element. The FWD load pulse was simulated as

P ðr; tÞ ¼ F ðtÞSðrÞ ð55Þ

where F ðtÞ is an arbitrary function of time and SðrÞ is the spatial function of the load distribution in the
radial direction. F ðtÞ was represented by a complex exponential Fourier series as

F ðtÞ ¼
X1
n¼0

F̂Fneixnt ð56Þ

in which F̂Fn is the nth Fourier coefficient. F̂Fn can best be determined by means of the FFT (Brigham, 1988).
Typical time history of the FWD load pulse F ðtÞ and its frequency spectrum are shown in Fig. 3. The

number of samples are N ¼ 2048. It can be seen that, for such a load pulse, the force magnitudes at fre-
quencies beyond 150 Hz are not significance. Hence, the analysis to a maximum frequency of 150 Hz, that
is n ¼ 77, will suffice.

On the other hand, the spatial function SðrÞ that describes the spatial geometry of the FWD loading
plate was presented, by means of Eq. (51a), as

SðrÞ ¼ 1

A

X1
m¼1

F̂FmJ0ðnmrÞ; 06 r6 a ð57Þ

in which A is the surface area of the FWD loading plate with radius a and F̂Fmð¼ F̂FzmÞ is the Fourier–Bessel
coefficient. For a cylindrical shape load with radius a and a unit amplitude, the coefficient F̂Fm can then be
determined (Al-Khoury et al., 2001a,b) as
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F̂Fm ¼ 2a
amRJ 2

1 amð Þ J1
am

R
a

� �
ð58Þ

F̂Fm is an alternating function, which requires a relatively large number of samples. The number of samples
necessary to describe the spatial geometry of the loading plate, for a ¼ 150 mm and R ¼ 150 mm, was
M ¼ 1700, which was obtained by experiment. The boundary distance R ¼ 150 m was chosen, arbitrarily,
to insure that no FWD induced waves can arrive.

Solution of the system of equations for determination of the displacements at the nodes is done by
complex matrix inversion of the assembled stiffness matrix. The number of matrix inversions required, for
this specific case, is N 	M ¼ 77	 1700. Even though the number of matrix inversions seems to be large,
the computation time is extremely short because of the small number of the system of equations involved in
formulating the spectral element stiffness matrices.

In the finite element system INSAP-PM, the geometry was simulated by use of 1040, 20 noded brick
elements. INSAP-PM is capable to simulate dry, partially saturated and fully saturated media under both
static and dynamic loading conditions. The structure was assumed to extend 6 m in the horizontal direction
and 15.4 m in the vertical direction. Also, because of symmetry, only a quadrant of the pavement was
simulated. The radius of the loaded area was 150 mm. The detailed mesh surrounding the loaded area is
shown in Fig. 4.

The oscillation of the pavement surface, at several locations, as computed by INSAP-PM is presented in
Fig. 5(a) and by LAMDA in Fig. 5(b). It can be seen that the results are similar except that in the finite
element analysis some disturbances appear at the end of the response, which can be attributed to the re-
flections at the boundaries of the mesh. The execution times were about 2 min for the spectral element
method in an Intel 300 MHz PC, and about 1 h for the finite element method in a Digital Alpha 600 MHz
Workstation.

6. Inverse calculation of layer parameters

In Al-Khoury et al. (2001a,b) details of the parameter identification procedure for layered systems were
presented. The focus was on the interpretation of data obtained from the FWD test of pavement structures.

Fig. 3. FWD load pulse and its spectrum.
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Fig. 4. INSAP-PM finite element mesh.

Fig. 5. Surface displacements (a) INSAP-PM, (b) LAMDA.
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In the present contribution a brief review of the parameter identification procedure is presented. The
emphasis has been placed on the application of the procedure for the determination of layer parameters in
the presence of a saturated subgrade. The effect of ignoring the porous medium in the back calculation of
layer parameters is examined.

In the proposed parameter identification technique of layered systems, the procedure begins with the
estimation of system transfer functions from measured input/output data. On the basis of the formulations
presented in the previous sections, the theoretical transfer functions are determined. Parameter identifi-
cation is then performed by means of iterative solution of the system objective function, which describes the
theoretical transfer functions in terms of the measured once.

The system objective function is presented as

qðxÞ ¼
X
m

F̂FmĜGðz; nm;xnÞJ0ðnmlÞ
�����

�����
theoretical

� ĜGlðxnÞ
��� ���

measured
6 e ð59Þ

in which ĜGðz; nm;xnÞ represents the theoretical transfer function at sensor location l, (obtained from the
inversion of the assembled stiffness matrix), and ĜGlðxnÞ represents its corresponding experimental transfer
function. x in Eq. (59) represents the vector of the unknown variables such as layer elastic modulus,
thickness, etc. and e is a convergence criterion.

The solution of a system of multi-dimensional non-linear equations, such as Eq. (59), requires mini-
mization techniques. In Al-Khoury et al. (2001a,b) three minimization algorithms (Factored Secant Up-
date, Modified Levenberg–Marquardt and Modified Powell Hybrid) were utilized and examined in terms of
their stability and rate of convergence. Here only the Modified Powell hybrid algorithm (Scales, 1985) for
solving a non-constrained system of non-linear simultaneous equations with a finite-difference Jacobian was
utilized.

6.1. Engineering application

Parameter identification of pavement layers is usually done by assuming dry profiles. However, roads, in
many parts of the world, are built on water-saturated subgrades. As was shown earlier, due to the inter-
action between the solid particles and the fluid, waves of different nature exist in the wet profiles as
compared with the dry ones (Biot, 1956). As a consequence, the use of dry models to simulate wet profiles
may produce erroneous results.

To illustrate this, two forward analyses were conducted to simulate a pavement structure consisting of an
asphalt layer (E modulus ¼ 1000 MPa and h ¼ 150 mm), a subbase layer (E modulus ¼ 200 MPa and
h ¼ 250 mm) and a subgrade layer (E modulus ¼ 10 MPa and h ¼/ mm). In one case, the subgrade was
assumed dry and in the other it was assumed fully saturated. Surface responses, for both cases, are shown in
Fig. 6. Comparing the two figures shows that the displacement magnitudes for the dry case are larger than
those for the wet case. The reason for this is that in the wet case the development of the excess pore pressure
contributes to the resistance to the applied forces and therefore less displacements are exhibited. Also, it can
be noticed that in the case of wet profile, more uplifting occurs at the surface compared with that for the dry
case.

The data obtained from the wet profile, Fig. 6a, were used as input to the inverse model to calculate back
the original elastic moduli of the layer materials. Two forward models were utilized; one with one-phase
elements (two layer elements and one semi-infinite element), and another consisting of two one-phase layer
elements and a semi-infinite two-phase element. The results of the parameter identification algorithm are
shown in Table 1. It can be seen that the use of the porous model enables accurate backcalculation of the
material parameters. However, if a dry model is utilized, it will overestimate the material parameters.
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The inverse calculations were done for a single frequency. The number of iterations were about 15
iteration, each takes <2 s in an Intel 300 MHz PC.

7. Conclusions

The proposed methodology that combines Biot’s theory of propagation of elastic waves in a fluid-sat-
urated porous solid with the spectral element technique has been shown to be an efficient computational
tool for analyzing the dynamic behavior of multi-layer systems consisting of both one- and two-phase

Fig. 6. Surface displacements (a) wet profile, (b) dry profile.

Table 1

Backcalculation by means of different forward models

Layer Actual values (MPa) Initial guess Backcalculated

Dry case Wet case

Asphalt 1000 200 1130 1000

Subbase 200 40 230 200

Subgrade 10 2 25 10
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material layers. The advantages and the robustness of the proposed methodology can be attributed to the
following reasons:

1. The spectral element method describes waves exactly, and hence, one element is adequate to describe a
whole layer. Consequently, the size of the mesh of a layered system is only as large as the number of the
layers involved.

2. The response of the developed two-phase element can be computed on the basis of the two displacement
degrees of freedom, similar to that of the one-phase elements. This reduces the size of the system of equa-
tions, and also, enables direct assembly with the one-phase layer elements.

3. The spatial domain (in the radial direction) is considered to span to a ‘‘finite’’ boundary, where waves are
postulated to vanish. Element formulation over such a domain has lead inevitably to series summation
over discrete number of vibration modes. This avoids the inconvenience of the numerical evaluation of
infinite integration involve in far field formulations.

Because of the computational efficiency, the methodology is suitable for direct utilization in iterative
schemes for parameter identification of pavement layered systems on the basis of FWD measurements. It is
shown that ignoring the presence of saturated subgrade may overestimate the backcalculated layer moduli.
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